Adaptive Grinding Process (AGriPro) –
Prevention of Thermal Damage using OPC UA Technique and in-Situ Metrology

Franz Haas
Matthias Steffan
Institute of Production Engineering
Graz University of Technology
Graz, Austria

Alexander Pierer
Jens Gentzen
Fraunhofer Institute for Machine Tools
and Forming Technology
Chemnitz, Germany
Agenda

• Institute of Production Engineering, TU Graz, Austria
• Fundamentals of “burning” during grinding
• Control Concept „1“ with force measurement
• Experiments and Results
• Micro-magnetic Measurement of Thermal Damage
• Control Concept „2“ with in-process “Barkhausen” noise measurement
• Summary and Acknowledgements
Institute of Production Engineering

- Precision Machining
- Additive Manufacturing
- Fluid Technology
- High Performance Machining
Institute of Production Engineering

smartfactory@tugraz

ERP
MES
PLC AND SCADA
MACHINES
Adaptive Grinding Process - Burning

\[U_s = \frac{F_t'}{Q_w'} \]

\[F_t' = \frac{F_t}{b_{eff}} \]

\[Q_w' = d_w \cdot \pi \cdot v_{fr} \]

\[U_s(Q_w') = C_1 \cdot Q_w'^{C_2} \]

\[F_{t,\text{max}}(v_{fr}) = C_1 \cdot [v_{fr}]^{(1+C_2)} \cdot C_3 \]

\[C_3 = \frac{b_{eff}}{v_c} \cdot [\pi \cdot d_w]^{(1+C_2)} \]

Tangential force as reference value

Tangential force / N

\[F_t = C_1 \cdot [v_{fr}]^{(1+C_2)} \cdot C_3 \]

\[C_3 = \frac{b_{\text{eff}}}{v_c} \cdot \left[\frac{\pi \cdot d_w}{60} \right]^{(1+C_2)} \]
Research Grinding Machine at the Institute

Main spindle
- Power: 72.5 kW
- Grinding wheel diameter: 650 mm
- Grinding wheel width: 200 mm
- Rotary speed: 6500 min⁻¹
- Circumference velocity: 220 m/s

Dimensions
- Mass: 42 t
- Length and width: 6 m x 3.5 m

Workpiece
- Mass up to 750 kg
- Max. diameter: 520 mm
- Length: 1.5 m
Schematic representation of the control loop

```
Far
ID=201 WHENEVER (($R1<>0)
AND ($R50==1)) DO
$AA_OVR[X1]=$R1
```

Charging amplifier (KISTLER)
A/D converter (NI)
Measurement-PC (MATLAB)
PID controller
Output parameter R1 represents override value

SINUMERIK 840Dsl

Radial infeed v_{fr}

Far

ID=201 WHENEVER (($R1<>0)
AND ($R50==1)) DO
$AA_OVR[X1]=$R1

Communicated via OPC UA

Ethernet

Univ.-Prof. DI Dr.techn. Franz Haas
Optimization by infeed control

Risk of thermal damage

No thermal surface damage

+38%
Non-circular grinding principles

Oscillating non-circular grinding

Tool synchronous non-circular grinding

Cam
\[n_s : n_w = 1 : 1 \]

Polygon
\[n_s : n_w = 3 : 2 \]

Square
\[n_s : n_w = 2 : 1 \]
Tool synchronous grinding

Machine parameters

Workpiece spindle 2:
\[n_{\text{max}} = 4.500 \text{ min}^{-1} \]
Second grinding wheel:
\[\varnothing \text{ 600 mm x 200 mm} \]
Barkhausen noise principle and Machine Set-up
Assignment of workpiece sections

\[u_{int}(n, t_i) = u_{int}(n, t_{i-1}) + K_{int} \cdot (w(n) - x(n, t_i)) \]

\[u_{prop}(n, t_i) = K_{prop} \cdot (w(n) - x(n, t_i)) \]

\[u(n, t_i) = u_{int}(n, t_i) + u_{prop}(n, t_i) \]

- \(n \) \ldots index of angular workpiece segment
- \(i \) \ldots index of workpiece revolution
- \(t_i \) \ldots time stamp of \(i \)-th workpiece revolution
- \(x \) \ldots measured Barkhausen noise level
- \(w \) \ldots set-point Barkhausen noise level
- \(K_{int} \) \ldots integral gain of PI-controller
- \(K_{prop} \) \ldots proportional gain of PI-controller
- \(u_{int} \) \ldots integral part of controller output
- \(u_{prop} \) \ldots integral part of controller output
- \(u \) \ldots feed rate override (controller output) when segment is ground
Grinding experiment (CBN tool, 100Cr6 with 62 HRC)
Acknowledgements

The paper contains the contents and results of the CORNET II project "Adaptive Grinding Process (AGriPro)", which was completed after two years in December 2016. The authors would particularly like to thank the German and Austrian project partners for their involvement and input. The financing of the project was largely carried out by the Austrian Research Promotion Agency (FFG) and the German Federation of Industrial Research Associations “Otto von Guericke” e.V. (AiF). In addition, the project was generously supported by Alicona Imaging GmbH, Dewetron GesmbH, Franz Salmhofer GmbH, GST Gesellschaft für Schleiftechnik GmbH, Magna Powertrain AG & Co. KG, Messfeld GmbH and TCM Tool Consulting & Management GmbH.